On matrix exponential approximations of the infimum of a spectrally negative Levy process

نویسندگان

  • F. Avram
  • A. Horváth
  • M. R. Pistorius
چکیده

We recall four open problems concerning constructing high-order matrixexponential approximations for the infimum of a spectrally negative Levy process (with applications to first-passage/ruin probabilities, the waiting time distribution in the M/G/1 queue, pricing of barrier options, etc). On the way, we provide a new approximation, for the perturbed CramérLundberg model, and recall a remarkable family of (not minimal order) approximations of Johnson and Taaffe [JT89], which fit an arbitrarily high number of moments, greatly generalizing the currently used approximations of Renyi, De Vylder and Whitt-Ramsay. Obtaining such approximations which fit the Laplace transform at infinity as well would be quite useful. keywords: Levy process; first passage problem; Pollaczek-Khinchine formula; method of moments; matrix-exponential function; admissible Padé approximation; Johnson-Taaffe approximations; two-point Padé approximations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function

The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...

متن کامل

Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process

This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain   risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...

متن کامل

On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum

Consider a spectrally one-sided Lévy process X and reflect it at its past infimum I. Call this process Y . For spectrally positive X, Avram et al. [2] found an explicit expression for the law of the first time that Y = X − I crosses a finite positive level a. Here we determine the Laplace transform of this crossing time for Y , if X is spectrally negative. Subsequently, we find an expression fo...

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012